Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RFCMatchBoundsTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Termination of the TRS R could be shown with a Match Bound [6,7] of 7. This implies Q-termination of R.
The following rules were used to construct the certificate:

active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

The certificate found is represented by the following graph.

The certificate consists of the following enumerated nodes:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 26, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63

Node 1 is start node and node 2 is final node.

Those nodes are connect through the following edges: